
Allaudio Network

A decentralized live audio delivery and streaming network with a focus on privacy,

powered by a sustainable blockchain.

vishnu@rainverse.com

Version 1.0 | Nov 25 2021

Abstract

This whitepaper introduces the Allaudio Network, a blockchain and token as an incentive

mechanism for decentralized live audio streaming and delivery network without tracking

user data and activity.

The Allaudio Network and protocol ensures privacy of its users and solves various

challenges the live audio streaming industry faces today. First, with privacy at its focus, a

key-based authentication mechanism instead of traditional authentication methods so that

the user may take full control and responsibility of their private information. Second,

tokens on the Allaudio blockchain are used as an incentive to encourage individual users to

share their redundant computing and bandwidth resources as caching or relay nodes for

live audio streams. This improves the quality of stream delivery and solves the "last-mile"

delivery problem, the main bottleneck for traditional content delivery pipelines,

especially for high bitrate lossless audio and next generation audio formats including Dolby

Atmos. Third, with sufficient network density, the majority of listeners shall pull streams

from peering caching nodes, allowing audio platforms to significantly reduce content

delivery network (CDN) costs. More importantly, by introducing tokens as an end-user

incentive mechanism the Allaudio Network allows audio platforms to deepen listener

engagement, drive incremental revenues, and differentiate their content and listening

experience from their competitors.

The Allaudio blockchain adopts three main novel concepts:

● Multi-Level BFT: A modified BFT consensus mechanism which allows thousands of

nodes to participate in the consensus process, while still supporting very high

transaction throughput (1000+ TPS). The core idea is to have a small set of nodes,

which form the validator committee, produce a chain of blocks as fast as possible

using a PBFT-like process. Then, the thousands of consensus participants, called

guardians, finalize the chain generated by the validator committee at regular

checkpoint blocks. The name multi-level BFT consensus mechanism reflects the

fact that the validator/guardian division provides multiple levels of security

guarantee. The validator committee provides the first level of consensus - with 10

to 20 validators, the committee can come to consensus quickly. The guardian pool

forms the second line of defense. With thousands of nodes, it is substantially

difficult for attackers to compromise the integrity of the network, and thus

mailto:vishnu@rainverse.com


provides a much higher level of security. This mechanism achieves a good balance

among transaction throughput, consistency, and level of decentralization, the three

pillars of the so-called "ïmpossible triangle".

● Aggregated Signature Gossip Scheme: A basic all-to-all broadcasting of the

checkpoint block hash could work between guardian nodes, but it yields quadratic

communication overhead, and therefore cannot scale to 1000+ nodes. Instead, by

adopting an Aggregated Signature Gossip Scheme reduces messaging complexity.

Each guardian node keeps combining the partially aggregated signatures from all its

neighbors, and then gossips out the aggregated signature. This way the signature

share of each node can reach other nodes at an exponential rate, leveraging the

gossip protocol. In addition, the signature aggregation keeps the size of the

node-to-node messages small, and thus further reduces the communication

overhead.

● Resource Oriented Micropayment Pool: An off-chain "Resource Oriented

Micropayment Pool" that is purpose built for live audio streaming. It allows a user

to create an off-chain micropayment pool that any other user can withdraw from

using off-chain transactions, and is double-spend resistant. It is much more flexible

compared to off-chain payment channels.

The Allaudio blockchain also introduces a new concept:

● Key-Based Authentication and Profile Management: As an alternative to password

authentication, instead of requiring a user's password, it is possible to confirm the

identity of each node by using asymmetric cryptography algorithm, RSA, with

public and private keys. This empowers the user to own their private information

and contradict any forms of targeted advertisement.

table-of-contents

Vision

Introduction

Audio Streaming Market

The global music streaming market size was valued at USD 20.9 billion in 2019 and is

expected to expand at a compound annual growth rate (CAGR) of 17.8% from 2020 to

2027. The growing popularity of digital platforms and the increasing adoption of smart

devices is expected to positively impact industry growth during the forecast period.

According to the China based Tencent Music Entertainment (TME) group, the

year-over-year revenue from online music subscriptions increased by 70.0% in the first

quarter of 2020. Additionally, the number of online music paying users touched 42.7

million, a year-over-year rise of nearly 50%. Spotify reported a 29% year-over-year growth



in paid subscribers in 2019. In Q4 2019, the company registered 124 million paid users.

According to a report from the Recording Industry Association of America (RIAA), paid

streaming services in the U.S. added an average of over one million new subscriptions each

month, and the overall number of paid subscribers in the U.S. surpassed 60 million in

2019.

Audio Streaming Challenges

Content Delivery Networks (CDN) play an important role in the live streaming ecosystem.

It provides the backbone infrastructure to deliver the audio streams to end listeners. One

major limitation of today's CDN networks is the so-called "last-mile" delivery problem.

Typically, CDN providers build data centers called Point-of-Presence (PoPs) in many

locations around the globe, with the expectation that these PoPs are geographically close

to the listeners. However, the number of PoPs are limited, hence are not near enough to

the majority of listeners, especially in less developed regions. The "last-mile" link is

usually the bottleneck of today's streaming delivery pipeline and often leads to less

optimal user experience including choppy streams, bad audio quality and frequent

buffering.

To streaming sites and content platforms, another major concern is the CDN bandwidth

cost. For popular sites, the CDN bandwidth cost can easily reach tens of millions of dollars

per year. Even if platforms own proprietary CDNs, maintenance costs are often high.

These issues are becoming more prominent while streaming lossless audio and Dolby Atmos

audio format.

● Low quality - Comes with a bit rate of 96 Kbps, using 0.72 MB a minute or 43.2 MB

every hour.

● Medium Quality - Usually has a 160 Kbps bit rate, which translates to 1.20 MB

bandwidth usage every minute or 72 Mb per hour.



● High quality - 320 Kbps or slightly higher rate, costing 2.40 MB per minute and 144

MB per hour.

The below table shows an approximation of how much music a user can stream with

different data plans.

Data Plan Low Quality Medium Quality High Quality

2 GB 47 hours 28 hours 17 hours

5 GB 117 hours 70 hours 42.5 hours

10 GB 234 hours 140 hours 85 hours

Opportunity

Our mission is to leverage blockchain technology to create the first Decentralized Live

Audio Streaming and Delivery Network whereby audio listeners are incentivized to share

redundant computing and bandwidth resources to address today's live audio streaming

challenges. Using the Ethereum EVM "World Computer" metaphor, the Allaudio Network can

be viewed as the "World Cache" formed by the memory and bandwidth resources

contributed by its listeners.

Specifically, listeners around the globe can contribute their devices as "caching nodes"

whereby they form an audio delivery mesh network that is responsible for delivering any

given live audio stream to listeners around the world optimized for local delivery. The

Allaudio Network can effectively address the technical challenges discussed in the

previous section. First, all listener's devices are much closer than to the CDN PoPs. This

reduces packet round-trip time and improves the stream delivery quality, and thus

addresses the "last-mile" delivery issue. Second, with sufficient amount of cashing nodes,

most listeners will receive the stream from caching nodes, which will help streaming sites

reduce their CDN bandwidth cost. Third, caching nodes also reduce round-trip time making

next generation streaming technology practical.

To encourage listeners to contribute their computing and bandwidth resources, Allaudio

token is introduced as an incentive mechanism. Caching nodes can earn tokens as they

relay audio streams to other listeners. Not only does the Allaudio Token motivate listeners

to join the network as caching nodes, it also greatly improves the streaming market

efficiency by streamlining the audio delivery process. Also within the Allaudio Network,

advertisers can take advantage of the live streaming content category into consideration

and submit both text and audio based advertisements, and since the network uses a

key-based authentication for every user within the system it is virtually impossible to run

targeted ad-campaigns based on the user's data.

The full launch of the Allaudio Protocol will introduce a new blockchain and a native token

structure where:



● Caching nodes earn tokens for caching and relaying audio streams to other

geographically near listeners in the network.

● Listeners optionally can earn tokens from advertisers as engagement rewards which

can be gifted to live streamers of their choice.

● Streaming sites and platforms can drive incremental new revenues through sales of

premium goods and services, and deepen user engagement through Allaudio

Network.

● Advertisers may fund advertisement campaigns with tokens to support influencers,

streaming sites and listeners.

● Streaming sites and platforms can offload 80% of CDN costs.

The Allaudio protocol adopts and builds upon the following novel concepts:

● Multi-Level BFT: A modified BFT consensus mechanism which allows thousands of

nodes to participate in the consensus process, while still supporting very high

transaction throughput (1000+ TPS). The core idea is to have a small set of nodes,

which forms the validator committee, to produce a chain of blocks as fast as

possible using a PBFT-like process. Then, the thousands of consensus participants,

called the guardians, can finalize the chain generated by the validator committee

at regular checkpoint blocks. The name multi-level BFT consensus mechanism

reflects the fact that the validator/guardian division provides multiple levels of

security guarantee. The validator committee provides the first level of protection -

with 10 - 20 validators, the committee can come to a consensus quickly. The

guardian pool forms the second line of defence. With thousands of nodes, it is

substantially more difficult for attackers to compromise, and thus provides a much

higher level of security. This mechanism achieves a good balance among

transaction throughput, consistency, and level of decentralization, the three pillars

of the so-called "impossible triangle".

● Aggregated Signature Gossip Scheme: A naive all-to-all broadcasting of the

checkpoint block hash could work between guardian nodes, but it yields quadratic

communication overhead, and so cannot scale to 1000+ nodes. Instead an

Aggregated Signature Gossip Scheme can significantly reduce messaging

complexity. Each guardian node keeps combining the partially aggregated

signatures from all its neighbors, and then gossips out the aggregated signature.

This way the signature share of each node can reach other nodes at exponential

speed, thanks to the gossip protocol. In addition, the signature aggregation keeps

the size of the node-to-node message small, and thus further reduces the

communication overhead.

● Resource Oriented Micropayment Pool: An off-chain "Resource Oriented

Micropayment Pool" that is purpose built for audio streaming. It allows a user to

create an off-chain micropayment pool that any other user can withdraw from

using off-chain transactions, and is double-spend resistant. It is much more flexible

compared to off-chain payment channels. In particular, for the audio streaming use

case, it allows a listener to pay for audio data pulled from multiple caching nodes



without on-chain transactions. By replacing on-chain transactions with off-chain

payments, the built-in "Resource Oriented Micropayment Pool" significantly

improves the scalability of the blockchain.

● Key-Based Authentication and Profile Management: As an alternative to password

authentication, instead of requiring a user's password, it is possible to confirm the

identity of each node by using asymmetric cryptography algorithm, RSA, with

public and private keys. This empowers the user to own their private information

and contradict any forms of targeted advertisement.

Allaudio Mesh Delivery Network

Peer-to-peer streaming focuses on timely delivery of audio data under strict, near

real-time parameters. Peer-to-peer livestream delivery works best when many users tune

in for the same stream at the same time. High concurrent user count means more peering

resources are available, and thus the peer nodes can pull the stream from each other

more effectively. The whole system capacity increases as more peer nodes become

available. Moreover, robustness of the system is increased in a peer-to-peer network, as

nodes do not need to rely on a centralized CDN-based delivery, high concurrent users

instead place scalability pressures on the CDN servers.

However, the shortcoming of pure peer-to-peer streaming is availability. Peers come and

go at any time, which makes it difficult to predict the availability of any given peer node.

There are also uncontrollable differences of nodes, such as upload and download

capacities. On the other hand, a CDN service is more reliable and robust, and hence it can

serve as a reliable "backup" when the stream is not available from peer nodes.

Our goal is to achieve maximum CDN bandwidth reduction without sacrificing the

quality-of-service (QoS) which is critical to established streaming platforms. This means

whenever possible we want the peer nodes to pull the stream from each other instead of

from the CDN. To achieve this goal, it's crucial for the peer nodes to be able to identify

the neighbouring nodes efficiently. If a node can identify multiple peers in close proximity,

chances are that it can find peers that can provide the audio stream data segments much

more consistently. On the contrary, if the identified peers are "further away" in terms of

network hops, nodes might not be able to pull stream from peers consistently and cause

degraded user experiences such as stuttering, frequent buffering, etc.

To address this problem, Allaudio Network has designed and is currently implementing a

strategy which combines both a hyper-optimized tracker server and a player client-side

intelligence. Essentially, the tracker server provides high level guidance (e.g. a list of

candidate peers) for a player client, while the player client implements a peer filtering

algorithm at a finer granularity based on multiple variables to find the neighbouring nodes

that can best serve them.



{figure q: Interactions between the tracker servers and player clients}

Geo-Optimized Tracker Server

In order to provide a list of candidate peer nodes to each client, the tracker server records

the location information whenever a peer joins the network, including its IP address,

latitude/longitude, and a number of other performance parameters. With this information

the server can organize the nodes in a spatial database. A "hyper-optimized" spatial

database is optimized for storing and querying data that represents objects defined in

geometric space. As a peer node joins the network, the server can perform a spatial query

to retrieve a list of candidate peers that are in close proximity very quickly and efficiently,

see figure: q. The tracker servers and the spatial databases can be maintained by live

audio streaming sites that use the Allaudio network and/or by community peers for

content delivery.

As mentioned earlier, a peer node might leave the network at any time. Hence the tracker

server also needs to be aware of which nodes are active. To achieve this, an active peer

node needs to maintain a socket connection with the server and send heartbeat signals

consistently. If the server does not receive a heartbeat for a certain amount of time, it

considers that peer node as having left the network, and updates the spatial database

accordingly.



An important distinction is that the "distance" between two peer nodes is measured by the

number of router hops between them rather than the geographical distance. Typically

network distance and geographical distance are highly correlated, but aren't necessarily

equivalent. For instance, two computers could sit next to each other physically, but

connect to different ISPs so there might be many hops between them. Hence, aside from

geographical information, the tracker server also utilizes the connectivity between the IP

addresses collected in the past to analyze and select neighbour candidates. For example,

candidates returned by the spatial query can go through another filter to exclude those

that are not connected to the same ISP as the listener's.

Intelligent Player Client

Each peer node may act both as a listener, a caching node or both. As the node launches,

during the handshake step, it retrieves a list of candidate peers from the tracker server

for the livestream it's playing. Then, it performs a speed and availability test to select a

subset that has optimized performance, connectivity and can reliably provide the audio

stream data segments. The client performs the speed and availability tests regularly

during a live stream session and continuously refines its neighbor list.

{figure p: Player stream data buffer handling}

To avoid Qos degradation, local buffer management is critical. The client player maintains

a local cache to buffer the downloaded stream data as in figure p. If the duration of the

cached stream data is less than a certain threshold, the player checks with the

neighboring peers to see if they have the desired audio data segment. In the event when

none of the neighbors has that particular audio data segment, the player intelligently falls

back to the CDN. To achieve the best QoS possible, the player fetches an updated

candidate list from the tracker server on a regular basis during a typical stream session.

The first version of the client player is a web/HTML5 based player which employs the

WebRTC protocol for stream delivery among peers. Deploying web-based players requires

minimal effort. Streaming sites and platforms simply embed the player onto their

webpages, and it instantly has access and "launches" millions of end user nodes in the

Allaudio mesh network. Thus, the deployment of Allaudio's mesh streaming technology is

very light-weight and frictionless.

Allaudio Network also plans to release client dApps for all major desktop and mobile

operating systems including Apple's Mac, Microsoft's Windows, Linux distributions, Android

and iOS. Other methods of proposed client interaction are based on browser plugins or

extensions supporting Google's Chrome, Mozilla Firefox and Apple's Safari.



Allaudio Blockchain Ledger

The Allaudio Ledger is a decentralized ledger designed for the audio streaming industry. It

powers the Allaudio token ecosystem which encourages end users to share their redundant

bandwidth and storage resources, and enables them to engage more actively with

streaming platforms and content creators. To realize these goals, a number of challenges,

many of which are unique for audio streaming applications, need to be tackled.

One of such challenges is to support ultra high transaction throughput. Although many

blockchain projects are facing transaction throughput problems, scaling for live audio

streaming is different and probably even more complex. Typically, audio segments are a

few seconds long. To achieve the finest granularity of a token reward - one micropayment

per audio segment - even a livestream with a moderate ten thousand concurrent listeners

could generate a couple of thousand microtransactions per second, which far exceeds the

maximum throughput of today’s public chains, such as Bitcoin and Etherium. Popular live

streams like major news channels can attract more than one million listeners listening to

one stream simultaneously, not to mention multiple concurrent live streams, which could

potentially push the required transaction throughput to the range of millions per second.

A byproduct of the high throughput is rapidly growing storage consumption. Storing the

micropayment transactions is highly storage demanding. With tens of thousands of

transactions added to the ledger every second, the storage space of an ordinary computer

could run out quickly.

Any streaming applications typically require fast consensus. For bandwidth sharing

rewards, the users that contribute redundant bandwidth, in our case every listener could

allow upto a maximum of 100 peer connections and the caching memory required for the

same, typically want the payment to be confirmed before sending the next one. Other use

cases, such as virtual gift donations to live stream hosts, also require short confirmation

times to enable real-time interactions between the hosts and audience.

Finally, as in any blockchain, security of the ledger is critical. Security is highly correlated

with the level of decentralization. In a Proof-of-Stake (PoS) based consensus mechanism,

decentralization means an even stake distribution among consensus participants. Ideally,

the consensus mechanism should allow thousands of independent nodes, each with similar

amounts of stake and each processing a local copy of the blockchain, to participate in the

block finalization process. To compromise such a system, a significant amount of

independent nodes would need to be controlled by the attackers, which is difficult to

achieve.

To achieve these goals, we need to design and implement our PoS consensus algorithm

based on the Byzantine Fault Tolerance (BFT) protocols, which offers good guarantees such

as consistency (a.k.a. safety) when more than ⅔ of nodes running the ledger software are

honest. However, the traditional BFT algorithms do not allow a high level of

decentralization. They typically incur O(n
2
) messaging complexity even for the normal

(non-faulty proposer) case, where n is the number of nodes participating in the consensus



protocol. When we have thousands of nodes, it will take a considerable amount of time to

reach agreement. To allow mass participation we adopt a multi-level BFT consensus

mechanism to achieve an approximate of 1000+ TPS throughput with the transaction time

as short as a few seconds.

Such level of transaction throughput, although already much higher than Bitcoin and

Etherium, is still not sufficient to handle the micropayments for the “pay-per-byte”

granularity. To further increase the throughput, the Allaudio ledger provides native

support for off-chain scaling, with a “resource oriented micropayment pool” which further

amplifies the supportable throughput by several orders of magnitudes.

The off-chain payment support not only boosts the throughput, but also decreases the

number of the transactions that need to be stored in the blockchain. On top of that, we

also adopt the technique of state and block history pruning to further reduce the storage

space requirement. Moreover, we have adopted the microservice architecture for the

storage system, which can adapt to different types of machines and storage backends, be

it powerful server clusters running in data centers, or commodity desktop PCs.

The Consensus Mechanism

Multi-Level BFT

The Allaudio ledger, built on a proven multi-level BFT consensus mechanism which allows

thousands of nodes to participate in the consensus process, while still supporting very high

transaction throughput (1000+ TPS).

The core idea is to have a small set of nodes, which form the validator committee,

produce a chain of blocks as fast as possible using a PBFT-like process. With a sufficient

number of validators (e.g. 10 to 20), the validator committee can produce blocks at a

faster rate, and still retain a higher degree of difficulty to prevent an adversary from

compromising the integrity of the blockchain. Hence, it is reasonable to expect that there

is a very high probability the validators will produce a chain of blocks without forking.

Then, the thousands of consensus participants, called the guardians, can finalize the chain

generated by the validator committee. Here “finalization” means to convince each honest

guardian that more than ⅔ of all the other guardians see the same chain of blocks.

Since there are many more guardians than validators, it could take a longer time for the

guardians to reach consensus than the validator committee. In order for the guardians to

finalize the chain of blocks at the same speed that the validator committee produces new

blocks, the guardian nodes can process the blocks at a much coarser grain. To be more

specific, they only need to agree on the hash of the checkpoint blocks, i.e. blocks whose

height are a multiple of some integer (e.g. ). This “leapfrogging” finalization𝑇 𝑇 = 100
strategy leverages the immutability characteristic of the blockchain data structure - as

long as two guardian nades agree on the hash of a block, with overwhelming probability,



they will have exactly the same copy of the entire blockchain up to that block. Finalizing

only the checkpoint blocks gives sufficient time for thousands of guardians to reach

consensus. Hence, with this strategy the two independent processes, i.e., block

production and finalization, can advance at the same pace.

Under the normal condition, finalizing a checkpoint block is similar to the “commit” step

of the celebrated PBFT algorithm since each guardian has already stored the checkpoint

block locally. Moreover, the checkpoint block has been signed by the validator committee,

and hence it is highly likely that all the honest guardians have the same checkpoint. Thus,

we only need a protocol for the honest guardians to confirm that indeed more than ⅔ of

all guardians have the same checkpoint hash.

To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash

could work, but it yields quadratic communication overhead, and so cannot scale to large

numbers of guardians. Instead a proposed aggregated signature gossip scheme which could

significantly reduce messaging complexity, combines the partially aggregated signatures

from its neighbors, and then gossips out the aggregated signature, along with a compact

bitmap which encodes the list of signers. This way the signature share of each node can

reach other nodes at exponential speed utilizing the gossip protocol. Within O(log n)

iterations, with high probability, all the honest guardian nodes should have a string which

aggregates the signatures from all other honest nodes if there is no network partition. In

addition, the signature aggregation keeps the size of the node-to-node messages small,

and thus further reduces the communication overhead.

As mentioned above, the validator committee consists of a limited set of validator nodes,

typically in the range of ten to twenty. They can be selected through an election process,

or a randomized process, and may be subject to rotation to improve security. To be

eligible to join the validator committee, a node needs to lock up a certain amount of

stake for a period of time, which can be slashed if malicious behavior is detected. The

blocks that the committee reaches consensus on are called the settled blocks, and the

process to settle the blocks is called the block settlement process.

The guardian pool is a superset of the validator committee, i.e. a validator is also a

guardian. The pool contains a large number of nodes, which could be in the range of

thousands. With a certain amount of tokens locked up for a period of time, any node in

the network can instantly become a guardian. The guardians download and examine the

chain of blocks generated by the validator committee and try to reach consensus on the

checkpoints with the above described “leapfrogging” approach. By allowing mass

participation, we can greatly enhance the security of transactions. The blocks that the

guardian pool has reached consensus on are called finalized blocks, and the process to

finalize the blocks is called the block finalization process.

The name multi-level BFT consensus mechanism reflects the fact that the

guardian/validator division provides multiple levels of security guarantee. The validator

committee provides the first level of protection - with 10 to 20 validators, the committee

can come to consensus quickly. Yet it is resistant enough to attacks - in fact, it already

provides a similar level of security compared to the DPoS mechanism if each validator



node is run by an independent entity. Thus, a transaction can already be considered safe

when it has been included in a settled block, especially for low stake transactions. The

guardian pool forms the second line of defence. With thousands of nodes, it is

substantially more difficult for attackers to compromise blockchain integrity, and thus

provides a much higher level of security. In an unlikely event that the validator committee

is fully controlled by attackers, the guardians can re-elect the validators, and the

blockchain can restart, advancing from the most recent block finalized by the guardians. A

transaction is considered irreversible when it is included in a finalized block. This

mechanism is said to achieve a good balance among transaction throughput, consistency,

and level of decentralization, the three corners of the so-called “impossible-triangle”.

This multi-level security scheme suits audio streaming applications well. For live streaming

platforms, most of the transactions are micropayments (e.g. payments for peer

bandwidth, virtual gifts to hosts/influencers, etc.) which typically have low value, but

require fast confirmation. For such low stake payments, the users only need to wait for

the block settlement, which is very fast, in a matter of seconds. For high stake transfers,

the user can wait longer until the block containing the transaction is finalized, which

could take slightly more time, but should happen within a few minutes.

System Model

Before diving into the details of the block settlement and finalization process, wew first

list our assumptions of the system. For ease of discussion, without loss of generality, below

we assume each node (be it a validator or a guardian) has the same amount of stake.

Extending the algorithms to the general case where different nodes have different

amounts of stake is straightforward.

Validator committee failure model: There are m validator nodes in total. Most of the

time, at most one-third of them are byzantine nodes. They might be fully controlled by

attackers, but this happens only rarely. We also assume that between any pair of validator

nodes there is a direct message channel (e.g. a direct TCP connection).

Guardian pool failure model: There are n guardian nodes in total. At any moment, at

most one-third of them are byzantine nodes. We do not assume a direct message channel

between any two guardians. Messages between them might need to be routed through

other nodes, some of which could be byzantine nodes.

Timing model: We assume the “weak synchrony” model. To be more specific, the network

can be asynchronous, or even partitioned for a bounded period of time. Between the

asynchronous periods there are sufficiently long periods of time where all message

transmissions between two honest nodes arrive within a known time bound . As we∆
discuss later in this paper, during the asynchronous period, the ledger simply stops

producing new blocks. It will never produce conflicting blocks even with a network

partition. During synchronous phases, block production will naturally resume, and eventual

liveness can be achieved.



Attacker model: We assume powerful attackers. They can corrupt a large number of

targeted nodes, but no more than one-third of all the guardians simultaneously. They can

manipulate the network at a large scale, and can even partition the network for a

bounded period of time. Yet they are computationally bounded. They cannot forge fake

signatures, and cannot invert cryptographic hashes.

The Block Settlement Process

Block settlement is the process in which the validator committee reaches agreement and

produces a chain of blocks for the guardian pool to finalize. Inspired by the Proof-of-Stake

research works including Tendermint, Casper FFG, and Hot-Stuff, we have designed and

implemented the block settlement algorithm described below. It employs a rotating block

proposer strategy where the validators take turns to propose new blocks. Then the

committee votes on the blocks to determine their order using a protocol similar to Casper

FFG and Hot-Stuff.

Block Proposal

The validators rotate in a round robin pattern to play the role of block proposer, which is

responsible for proposing the next block for the validator committee to vote on. To enable

the round robin rotation, each proposer maintains a local logical clock called epoch.

Assuming there are m validators, during epoch, 1 the validator with index ( mod ) is𝑡 𝑡 𝑚
elected as the proposer for that epoch. We note it is important that:

1. The epoch should not be stalled so that liveness of the proposer rotation is𝑡
guaranteed; and

2. The epoch of different validators should be mostly in sync. I.e. most of the time𝑡
all the validators have the same value, so they can agree on which node should𝑡
produce the next block.

Below is our protocol for proposer election and block proposal.



Algorithm 1: Round Robin Block Proposal

,𝑡 ←  0 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟 ←  0
𝑣𝑜𝑡𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒,  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒,  𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ←  𝑓𝑎𝑙𝑠𝑒

loop begin

mod𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟 ←  𝑡 𝑚
if( ) and (not proposed yet) begin //node elected as the proposer𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟 ==  𝑠𝑒𝑙𝑓. 𝑖𝑛𝑑𝑒𝑥
propose one block

end

the node has proposed or voted for a block for epoch𝑣𝑜𝑡𝑒𝑑 ←  𝑡
the node has received messages𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ←  𝑚/3 + 1 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
timeout reached𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ←  

If or or begin𝑣𝑜𝑡𝑒𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑖𝑚𝑒𝑜𝑢𝑡
broadcast message 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)

end

If the node has received messages begin2𝑚 + 3 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
//enters epoch𝑡 ←  𝑡 + 1 𝑡 + 1

𝑣𝑜𝑡𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒,  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒,  𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ←  𝑓𝑎𝑙𝑠𝑒
end

sleep for some time

end

Algorithm 1. The round robin block proposal protocol

The protocol defines a message , which can be viewed as a𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
synchronization message passed among the validators to assist them to advance to the

next epoch together. Essentially, a validator broadcasts message𝑡 + 1
to all other validators if any of the following conditions are met:𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)

1. the node proposed or voted for a block in epoch , or𝑡
2. the node has received messages from other𝑚/3 + 1 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)

validators, or

3. the node timed out for epoch (the timeout is set to 4 ).𝑡 ∆

On the other hand, the validator enters epoch when it has received𝑡 + 1
messages from other nodes.2𝑚/3 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)

Here we show that this protocol meets the above two requirements.

Eventual Progression: All the honest will eventually enter epoch . In the worst case,𝑡 + 1
all the honest nodes (at least nodes) reach timeout and broadcast the2𝑚/3 + 1

messages. Under the timing model assumption, all these messages𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
will be delivered within time after being sent out. Thus each honest node will receive at∆
least messages, and it then enters .2𝑚/3 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1) 𝑡 + 1



Epoch Synchrony: Intuitively, this means the epochs of all the honest nodes "move

together". More precisely, we claim that the time any two honest nodes enter epoch 𝑡 + 1
differ by at most most 2 . To prove this, we note that since there are at most faulty∆ 𝑓
nodes, for the first honest node to enter epoch , at least other honest nodes𝑡 + 1 𝑚/3
must have broadcasted the messages. This honest node then also𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
broadcasts an message following the protocol. After at most any𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1) ∆,
honest node should have received at least messages, which𝑚/3 + 1 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
triggers them to also broadcast the message. After , all the honest𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1) ∆
nodes receive messages and enter epoch . Thus, at most2𝑚/3 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1) 𝑡 + 1
2 after the first honest node enters epoch , the last honest node will enter the∆ 𝑡 + 1
same epoch.

In practice, when the network latency is small enough, all the honest nodes should enter

epoch at almost the same time. As a result, they can agree on who is the next𝑡 + 1
proposer. Also we note that for an actual implementation, the 𝐸𝑝𝑜𝑐ℎ𝐶ℎ𝑎𝑛𝑔𝑒(𝑡 + 1)
messages can be combined with other types of messages (e.g. block votes) to improve the

efficiency. So that in the normal case (no proposer failure), no additional synchronization

overhead is added to the system for epoch changes.

Block Consensus Among Validators

The protocol to settle proposed blocks involves a PBFT-based voting procedure among all

validators, similar to Casper FFG and Hot-Stuff. In the Allaudio ledger blockchain, the

header of each block contains a hash pointer to its parent block (i.e. the previous block in

the chain), similar to Bitcoin and Ethereum. Two blocks are conflicting if neither block is

an ancestor of the other. If there are multiple, conflicting block proposals for the same

epoch, an honest validator keeps all of them until one becomes settled, and then it

discards all conflicting blocks.

The block settlement protocol operates epoch by epoch. The proposer for the current

epoch sends to all validators a block proposal. A validator reacts by broadcasting a vote

for the block. All messages are signed by their senders.

The header of the proposed block might carry a commit-certificate, which consists of at

least signed votes for its parent block. We note that under the assumption(2𝑚/3 + 1)
that no more than validators are faulty, at most one block per height can obtain a𝑚/3
commit-certificate. A commit-certificate for a block indicates this block and all its

predecessors are committed. The proposed block may carry no commit-certificate, if its

parent block did it get signed votes.≥ 2𝑚/3 + 1

For the validators that are not the current proposer, their job is to vote on the proposed

blocks. Once a validator receives the new block, it broadcasts a signed vote to all

validators, so it can be collected by the proposer of the next epoch to form the

commit-certificate. If two consecutive blocks A and B both receive a commit-certificate,

then the parent block A and all its predecessors are considered settled. To ensure safety,



we require that honest nodes never vote for a block that conflicts with a settled block.

When there are forks (either due to faulty proposer or asynchrony), the honest nodes

should vote for the blocks on the largest fork.

The figure below illustrates the block settlement process. Assume that the proposer for

height 101 is faulty, and it proposed two conflicting blocks X101 and Y101, which leads to two

branches. Assuming neither X101 nor Y101 gets votes, then, neither the header≥ 2𝑚/3 + 1
of X102 and Y102 contains the commit-certificate (denoted by in the figure). However, at𝑛𝑖𝑙
some point branch X grows facter, and the two consecutive blocks X103 and Y103 both obtain

votes. After that the upper branch X up to block X102 is considered settled.≥ 2𝑚/3 + 1
And the lower branch Y can be discarded.

{figure b: The block settlement process}

The above example also illustrates one advantage of our implementation compared to

other PBFT based protocols like Tendermint - a block that does not receive a

commit-certificate can also be included in the settled chain, as long as one of its

successor blocks is settled. For instance, block X101 in the example did not get a

commit-certificate, but after block X102 is settled, it is also considered settled. This

reduces the waste of computation power and helps increase the transaction throughput.

Analysis

Safety: Safety means all honest validators agree on the same chain of blocks. More

precisely, if one honest validator accepts a block A, then any future blocks accepted by

other honest validators will appear in a chain of blocks that already contains A. The

argument for safety is similar to Casper FFG and Hot-Stuff and is omitted here, but

pointing out that safety stems from the requirement that honest nodes never vote for a

block that conflicts with a settled block.

Liveness: Liveness means the validator committee always makes progress, i.e., always

able to produce and agree on new blocks. Here we show that under our timing model,

during the synchronous periods, the committee can always achieve the liveness goal. First,

in the "Block proposal" section, we have proved that the epoch can always advance, and

all the honest validators march forward together. In an epoch where the proposer is an

honest validator, it will propose a new block. For the block settlement process, liveness

depends on that during the synchronous periods, there are infinitely many epochs where

two proposers in a row are honest, and wait sufficiently long to form the

commit-certificate. We note this is guaranteed to happen infinitely often with the round

robin rotation, since at least ⅔ of the validators are honest.

Transaction: With ten to twenty validators, the committee can produce and settle the

chain of blocks rather quickly. Average block production and settlement time is in the

order of seconds, and this leads to high throughput of as much as 1000+ transactions per

second.



The Block Finalization Process

In this section, we will discuss the "leapfrogging" block finalization process in detail. As

mentioned above, the guardians only need to reach consensus on the hashes of the

checkpoint blocks, which are the blocks whose heights are multiple of some integer T (e.g.

T = 100).

To see why it is sufficient to finalize just the checkpoint blocks, we note that the

transaction execution engine of the blockchain software can be viewed as a "deterministic

state machine", whereas a transaction can be viewed as a deterministic state transfer

function. If two nodes run the same state machine, then from an identical initial state,

after executing the same sequence of transactions, they will reach an identical end state.

Note that this is true even when some of the transactions are invalid, as long as those

transactions can be detected by the state machine and skipped. For instance, assume

there is a transaction that tries to spend more tokens than the balance of the source

account. The state machine can simply skip this transaction after performing a sanity

check. This way the "bad" transactions have no impact on the state.

In the context of blockchain, if all the honest nodes have the same copy of the blockchain,

they can be ensured to arrive at the same end state after processing all the blocks in

order. But with one caveat - the blockchain might contain a huge amount of data. How can

the two honest nodes compare whether they have the same chain of blocks efficiently?

Here the immutability characteristic of the blockchain data structure becomes highly

relevant. Since the header of each block contains the hash of the previous block, as long

as two nodes have the same hash of the checkpoint block, with overwhelming probability,

they should have an identical chain of blocks from genesis up to the checkpoint. Of course

each guardian node needs to verify the integrity of the blockchain. In particular, the block

hash embedded in each block header is actually the hash of the previous block. We note

that a node can perform the integrity checks on its own, no communication with other

nodes is required.

Interestingly, the immutability characteristic also enhances the tolerance to the network

asynchrony or even partition. With network partition, the guardians may not be able to

reach consensus on the hash of a checkpoint. However, after the network is recovered,

they can move on to vote on the next checkpoint. If they can reach agreement, then all

the blocks up to the next checkpoint are finalized, regardless of whether or not they have

consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least

two-thirds of the guardians have the same checkpoint block hash. Hence it needs to

receive signatures for a checkpoint hash from at least two-third of all guardians before the

node can mark the checkpoint as finalized. This is to ensure safety, which is similar to the

"commit" step in the celebrated PBFT protocol.



Since the guardians only need to vote on the checkpoint hashes every blocks, they have𝑇
more time to reach consensus. A straightforward implementation of checkpoint

finalization is thus to follow the PBFT "commit" step where each guardian broadcasts its

signature to all other guardians. This requires each node to send, receive and process 𝑂(𝑛)
messages, where each message can be a couple kilobytes long. Even with blocks time,𝑇
this approach still cannot scale beyond a couple hundred guardian nodes, unless we select

a large value, which is undesirable since it increases the block finalization latency.𝑇

Scaling to Thousand of Guardians

To reduce the communication complexity and scale to thousands of guardians, we have

designed an aggregated signature gossip scheme inspired by the BLS signature aggregation

technique and the gossip protocol. The scheme requires each guardian node to process a

much smaller number of messages to each consensus, which is much more practical. Below

are the steps of the aggregated signature gossip protocol. It uses the BLS algorithm for

signature aggregation.

Algorithm 2: Aggregated Signature Gossip

, i SignBLS( i, cp || cp), i InitSignerVector( )𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒 σ ← 𝑠𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 ℎ𝑎𝑠ℎ 𝑐 ← 𝑖

for to begin𝑡 =  1 𝐿

send ( i , i) to all its neighboring guardiansσ 𝑐

if break𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑

wait for ( j , j) from all neighbors until timeoutσ 𝑐

verify each ( j , j), discard if it is invalidσ 𝑐

aggregate valid signatures i iσ ← σ ·  
𝑗

∏  σ
𝑗
 ,  𝑐

𝑖
 ←  𝑐

𝑖
 +  

𝑗
∑  𝑐

𝑗( ) 𝑚𝑜𝑑 𝑝

calculate the number of uniquesigners 𝑠 ←  
𝑛

∑  𝐼 (𝑐
𝑖
[𝑘] >  0)

if 𝑠 ≥  2
3 𝑛 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 ←  𝑡𝑟𝑢𝑒

end

Algorithm 2: The aggregated signature gossip protocol

The core idea is rather simple. Each guardian node keeps combining the partially

aggregated signatures from its neighbors, and then gossips this newly aggregated signature



out. This way the signature share of each node can reach other nodes at exponential

speed by using the gossip protocol. In addition, the signature aggregation keeps the size of

the messages small, and thus reduces the communication overhead.

In the above diagram, is the index of the current guardian node. The first line of the𝑖
protocol uses function SignBLS() to generate its initial aggregated signature . Itσ

𝑖

essentially signs a message which is the concatenation of the height and hash of the

checkpoint block using the BLS signature algorithm, with multiplicative cyclic group of𝐺
prime order , and generator :𝑝 𝑔

ℎ
𝑖
 ←  𝐻 𝑝𝑘

𝑖
 ,  ℎ𝑒𝑖𝑔ℎ𝑡

𝑐𝑝
 || ℎ𝑎𝑠ℎ

𝑐𝑝( )
σ

𝑖
 ←  (ℎ

𝑖
)𝑠𝑘

𝑖

In the first formula above, function is a hash function that takes both𝐻 :  𝐺 ×  {0, 1}* →  𝐺
the public key and the message as input. This is to prevent the rogue public-key𝑝𝑘

𝑖

attack.

The protocol also uses function InitSignerVector() to initialize the signer vector , which𝑐
𝑖

is an dimensional integer vector whose entry represents how many times the𝑛 𝑗𝑡ℎ 𝑗𝑡ℎ

guardian has signed the aggregated signature. After initialization, its entry is set to 1,𝑖𝑡ℎ

and the remaining entries are all set to 0.

After initialization, the guardian enters a loop. In each iteration, the guardian first sends

out its current aggregated signature and the signer vector to all its neighbors. Then, ifσ
𝑖

𝑐
𝑖

it has not considered the checkpoint as finalized, it waits for the signature and signer

vector from all its neighbors, or waits until timeout. Upon receiving all signature and

signer vectors, it checks the validity of using the BLS aggregated signature(σ
𝑗
 ,  𝑐

𝑗
)

verification algorithm.

ℎ
𝑢
 ←  𝐻(𝑝𝑘

𝑢
 ,  ℎ𝑒𝑖𝑔ℎ𝑡

𝑐𝑝
 || ℎ𝑎𝑠ℎ

𝑐𝑝
)

check if 𝑒 σ
𝑗
 ,  𝑔( ) =  

𝑢

𝑛

∏(𝑒(ℎ
𝑢
 ,  𝑝𝑘

𝑢
))

𝑐
𝑗
[𝑢]

where is a bilinear mapping function from to another𝑒 :  𝐺 ×  𝐺 →  𝐺
𝑇

𝐺 ×  𝐺 𝐺
𝑇'

multiplicative cyclic group also of prime order . All the invalid signatures and their𝑝
associated signer vectors are discarded for the next aggregation step. It is worth pointing

out that besides the above check also requires the public key of theℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑝'

ℎ𝑎𝑠ℎ
𝑐𝑝'

𝑝𝑘
𝑢

relevant guardians as input. All this information should be available locally, since when a

guardian locks up its stake, its public key should be attached to the stake locking

transaction which has already been written into the blockchain. Hence, no communication

with other nodes is necessary to receive these inputs.



The aggregation step aggregates the BLS signature , and updates the signer vector .σ
𝑗

𝑐
𝑗

Note that for the vector update, we take for each entry. We can do this because𝑚𝑜𝑑 𝑝
, which is a multiplicative cyclic group of prime order . This guarantees𝑒(ℎ

𝑢
 ,  𝑝𝑘

𝑢
) ∈  𝐺

𝑇
𝑝

that the entries of vector can always be represented with a limited number of bits.𝑐
𝑗

σ
𝑖
 ←  σ

𝑖
 ·  

𝑗
∏  σ

𝑗
 ,  𝑐

𝑖
 ←  𝑐

𝑖
 +  

𝑗
∑ 𝑐

𝑗( ) 𝑚𝑜𝑑 𝑝

The algorithm then calculates the number of unique signers of the aggregated signature.

𝑠 ←  
𝑛

∑ 𝐼(𝑐
𝑖
[𝑘] >  0)

Here function {true, false} {1,0} maps a true condition to 1, and false to 0. Hence the𝐼: →
summation counts how many unique signers have contributed to the aggregated signature.

If the signature is signed by more than two-third of all the guardians, the guardian

considers the checkpoint to be finalized.

If the checkpoint is finalized, the aggregated signature will be gossipped out in the next

iteration. Hence within iterations all the honest guardians will have an𝑂(𝑙𝑜𝑔(𝑛))
aggregated signature that is signed by more than two-third of all guardians if the network

is not positioned.

The loop has iterations, should be in the order of to allow the signature to𝐿 𝐿 𝑂(𝑙𝑜𝑔(𝑛))
propagate through the network.

Analysis

Aggregated Signature Gossip Correctness: To prove the correctness of the aggregated

signature gossip protocol, we need to prove two claims. First, if an aggregated signature is

correctly formed by honest nodes according to Algorithm 2, it can pass the check given by

Formula (4). Second, the aggregated signature is secure against forgery. Stated more

formally, forging a fake aggregated signature in the context of Algorithm 2 means to find

and integers which satisfy the equation belowσ ∈  𝐺 𝑐
1
,  𝑐

2
,  ...  𝑐

𝑛

𝑒(σ,  𝑔) =  
𝑢=1

𝑛

∏  (𝑒(ℎ
𝑢
,  𝑝𝑘

𝑢
))𝑐

𝑢



for randomly chosen , and random message hashes𝑝𝑘
1
 =  𝑔

𝑠𝑘
1 ,  ...,  𝑝𝑘

𝑛
 =  𝑔

𝑠𝑘
𝑛 ∈  𝐺

. It can be shown that this is as hard as the Computational Diffie-Hellmanℎ
1
...,  ℎ

𝑛
 ∈  𝐺

(CDH) problem. For the proof of these two claims, please refer to our multi-level BFT

technical report.

Finalization Safety: Safety of the block finalization is easy to prove. Under the ⅔
supermajority honesty assumption, if two checkpoint hashes for the same height both get

aggregated signatures from at least ⅔ of all guardians, at least one honest guardian has to

sign different hashes for the same height, which is not possible.

Finalization Liveness: Without network partition, as long as is large enough, it is likely𝐿
that after iteration, all the honest nodes will see an aggregated signature that𝑂(𝑙𝑜𝑔(𝑛))
combines the signatures of all honest signers. This is similar to how the gossip protocol can

robustly spread a message throughout the network in time, even with up to ⅓𝑂(𝑙𝑜𝑔(𝑛))
byzantine nodes. When there is network partition, consensus for a checkpoint may not be

able to reach finalization. However, after the network partition is over, the guardian pool

can proceed to finalize the next checkpoint block. If consensus can then be reached, all

the blocks up to the next checkpoint are considered finalized. Hence the finalization

process will progress eventually.

Messaging Complexity: The aggregated signature gossip protocol runs for iterations,𝐿
which is in the order of . In each iteration, the guardian needs to send message𝑂(𝑙𝑜𝑔(𝑛))

to all its neighboring guardians. Depending on the network topology, typically it is(σ
𝑖
 ,  𝑐

𝑖
)

reasonable to assume that for an average node, the number of neighboring nodes is a

constant (i.e. the number of neighbors does not grow as the total number of nodes grows).

Hence the number of message a node needs to send or receive to finalize a checkpoint is

in the order of , which is much better than the complexity in the naive𝑂(𝑙𝑜𝑔(𝑛)) 𝑂(𝑛)
all-to-all signature broadcasting implementation. We do acknowledge that each message

between two neighboring guardians contains an dimensional signer vector , where𝑛 𝑐
𝑖

each entry of is an integer smaller than prime . However, we note that this vector can𝑐
𝑖

𝑝

be represented rather compactly since most of its entries are smaller integers in(≪  𝑝)
practice.

To get a more concrete idea of the messaging complexity, let us work out an example.

Assume that we pick a 170-bit long prime number for the BLS signature, which can𝑝
provide security comparable to that of a 1024-bit RSA signature. And there are 1000

guardians in total. Under this setting, can be represented with about twenty kilobytes𝑐
𝑖

without any compression. Since most of the entries of are far smaller than , can be𝑐
𝑖

𝑝 𝑐
𝑖

compressed very effectively to a couple kilobytes long. Plus the aggregated signature, the

size of each message is typically in the kilobytes range. Moreover, if we assume on average

a guardian connects to 20 other guardians, then can be as small as 5 (more than twice of𝐿
). This means finalizing one checkpoint just requires a guardian to𝑙𝑜𝑔

20
(1000) =  2. 3

send/receive around 100 messages to/from its neighbors, each about a couple kilobytes

long. This renders the aggregated signature gossip protocol rather practical to implement



and can easily scale to thousands of guardian nodes. For further analysis, please also refer

to the multi-level BFT technical report in this paper.

Reward and Penalty for Validators and Guardians

The token reward and penalty structure is essential to encourage nodes to participate in

the consensus process, and not to deviate from the protocol.

Both the validators and guardians can obtain a token reward. Each block includes a special

Coinbase transaction that deposits newly minted tokens to the validator and guardian

addresses. All the validators can get a share of tokens for each block. For guardians,

rewarding every guardian for each block might not be practical since their number is

large. Instead, the following algorithm is proposed to randomly pick a limited number of

guardians as the reward recipient for each block.

Denote the height of the newly proposed block by , and is the most recently finalized𝑙 𝑐𝑝
checkpoint. The proposer should have received the aggregated signature andσ

𝑐𝑝

corresponding signer vector for checkpoint . Upon validating , the proposer𝑐
𝑐𝑝

𝑐𝑝 (σ
𝑐𝑝

 ,  𝑐
𝑐𝑝

)

can check the following condition for each guardian whose corresponding entry in vector

is not zero (i.e. that the guardian signed the checkpoint).𝑐
𝑐𝑝

𝐻(𝑝𝑘
𝑖
 ,  σ

𝑐𝑝
 || 𝐵

𝑙−1
) ≤  τ

where is the hash of the block with height , and is the𝐵
𝑙−1

𝑙 − 1 𝐻 :  𝐺 ×  {0, 1}* →  𝐺

same hash function used in the BLS signature algorithm. If the inequality holds, the

proposer adds the guardian with public key to the Coinbase transaction recipient list.𝑝𝑘
𝑖

Threshold is chosen properly such that only a small number of guardians are included.τ
The proposer should also attach to the Coinbase transaction as the proof of(σ

𝑐𝑝
 ,  𝑐

𝑐𝑝
)

reward.

The Allaudio ledger also enforces a token penalty should any malicious behavior be

detected. In particular, if a block proposer signs conflicting blocks for the same height, or

if a validator votes for different blocks of the same height, they should be penalized.

Earlier we mentioned that to become either a validator or a guardian, a node needs to

lock up a certain number of tokens for a period of time. The penalty will be deducted

from their hashed tokens. The node that detects the malicious behavior can submit a

special Slash transaction to the blockchain. The proof of the malicious behavior (e.g.

signatures for conflicting blocks) should be attached to the Slash transaction. The penalty

tokens will be pulled from the malicious node and awarded to the node that submitted the

first Slash transaction.



In the unlikely event that more than one-third of the validators are compromised, the

malicious validators can attempt to perform the double spending attack by forking the

blockchain from a block that is settled but not yet finalized. However, this is detectable

by the guardian pool, since forking will generate multiple blocks with the same height, but

signed by more than two-third of the validators. In this case, the validators chat

conducted the double signing will be penalized, and the entire validator committee will be

re-elected. After the validator committee is reinstated, the blockchain can continue to

advance from the most recent finalized checkpoint.

Turing-Complete Smart Contract Support

This Allaudio ledger offers a smart contract runtime environment fully compatible with the

Ethereum Virtual Machine. It provides full-fledged support for Turing-Complete smart

contracts. Solidity-based Ethereum smart contracts can be ported to the Allaudio ledger

with little effort. Solidity has grown a large developer community and the prospect of

allowing that proven talent pool to also contribute to Allaudio without reinventing the

wheel was a prime consideration in enabling compatibility with Ethereum Virtual Machine

(EVM).

Smart contracts enable rich user experiences and new attribution models for audio

platform dApps built on Allaudio ledger. For instance, audio platforms can make use of

smart contracts for loyalty programs to engage users. Based on users' activity, or the

volume of audio segment data they have cached and relayed, platform dApps may

promote users to a higher tier, which unlocks certain privileges or exclusive capabilities.

As another example, audio platforms can issue virtual items backed by the ledger

blockchain (e.g. a virtual heart) for gifting to their favourite artist. To expand on such a

concept, built on the "non-fungible token" standard, the virtual items could be rare or

unique, such that they are essentially "crypto collectibles", which can be kept as trophies

or traded for other sought after collectibles, all without additional permissions from 3rd

parties.

Moreover, audio platforms are able to write smart contracts that enable more fluid

payment-consumption models, such as pay-as-you-go or per-use models. Instead of

traditional annual or monthly subscriptions, user consumption can be priced at a bite-sized

granularity, such that users only need to pay for what they use. This is a feasible way to

allow low-priced, short-form content to be transacted in an economically sensible way,

that accrues benefits to both the audio platform and user. Allaudio ledger's properties of

tracking micropayments and audio segments enables such smart contracts to be executed.

Smart contracts can also be designed to the benefit of content creators (e.g.

user-generated content producers, large production studios) as a way to fairly and

transparently distribute royalties. The traditional royalty settlement processes, with all

their complexities and obscurities, can be accommodated with clear smart contract terms



that are mutually agreed upon by creators and distributors - and made available to users

that consume the content.

Leveraging smart contracts on the Allaudio ledger to enable fully digitized item ownership,

innovative payment-consumption models, and transparent royalty distributions provide an

additional layer of social and economic interactivity that supplements the core

functionality of the audio content delivery.

Off-Chain Micropayment Support

As discussed in the introduction section, support for high transaction throughput is a must

for an audio streaming focussed blockchain. Building the support for off-chain payment

directly into the ledger to facilitate high volumes of transactions.

Resource Oriented Micropayment Pool

We have designed and implemented an off-chain "Resource Oriented Micropayment Pool"

that is purpose-built for live audio streaming. It allows a user to create an off-chain

micropayment pool that any other user can withdraw from using off-chain transactions,

and is double-spend resistant. It is much more flexible compared to off-chain payment

channels. In particular, for the audio streaming use case, it allows a listener to pay for a

live audio stream pulled from multiple caching nodes without on-chain transactions. By

replacing on-chain transactions with off-chain payments, the built-in "Resource Oriented

Micropayment Pool" significantly improves the scalability of the blockchain.

The following scenario and diagram provide a comprehensive walkthrough of how the

Resource Oriented Micropayment Pool works in application.

{Figure r: Resource Oriented Micropayment Pool shows listener Ann making off-chain

transactions to cachers Bob and Carol for audio chunks}

● Step 1. Micropayment pool creation: As the first step, Ann publishes an on-chain

transaction to create a micropayment pool with a time-lock and slashable

collateral.

𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝐷,  𝑑𝑒𝑝𝑜𝑠𝑖𝑡,  𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙,  𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

A couple things to be noted. To create the pool, Ann needs to specify the "Resource

ID" that uniquely represents the digital content she intends to retrieve.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝐷
It refers to a live stream.



The amount needs to be at least the total value of the resource to be𝑑𝑒𝑝𝑜𝑠𝑖𝑡
retrieved. For example, if the resource is an audio file which is worth 10 tokens,

then the deposit has to be at least 10 tokens.

The is required to discourage Ann from double spending. If a double𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙
spending attempt from Ann is detected by the validators of the blockchain, the

collateral will be slashed. Later in the document we will show that if

, the net return of a double spend is always negative, and𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 >  𝑑𝑒𝑝𝑜𝑠𝑖𝑡
hence any rational user will have no incentive to double spend.

The duration is a time-lock similar to that of a payment channel. Any withdrawal

from the payment pool has to be before the time-lock expires.

The blockchain returns Ann the Merkle proof of the transaction after it𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙
has been committed to the blockchain, as well as , the𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙𝑇𝑥𝐻𝑎𝑠ℎ
transaction hash of the transaction.𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙

● Step 2. Initial handshake between peers: Whenever Ann wants to retrieve the

specified resource from a peer (Bob, Carol, or David, etc.). She sends the Merkle

proof of the on-chain transaction to that peer. The recipient peer𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙
verifies the Merkle proof to ensure that the pool has sufficient deposit and

collateral for the requested resource, and both parties can proceed to the next

steps.

● Step 3. Off-chain micropayments: Ann signs transactions and𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡
sends them to the peers off-chain in exchange for parts of the specified resource

(e.g. a live stream segment). The transaction contains the𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡
following data

𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠,  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐴𝑚𝑜𝑢𝑛𝑡,  𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙𝑇𝑥𝐻𝑎𝑠ℎ,  𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒,
Sign(𝑆𝐾

𝐴
 ,  𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 || 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐴𝑚𝑜𝑢𝑛𝑡 || 𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙𝑇𝑥𝐻𝑎𝑠ℎ ||

𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒)

The is the address of the peer that Ann retrieves the resource from,𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠
and the is the amount of token payment Ann intends to send. The𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐴𝑚𝑜𝑢𝑛𝑡

is to prevent a replay attack. It is similar to the "nonce"𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
parameter in an Ethereum transaction. If a target publishes a 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡
transaction to the blockchain (see the next step), its 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
needs to increment by one.

The recipient peer needs to verify the off-chain transactions and the signatures.

Upon validation, the peer can send Ann the resource specified by the 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑜𝑙
transaction.



Also, we note that the off-chain transactions are sent directly𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡
between two peers. Hence there is no scalability bottleneck for this step.

● Step 4. On-chain settlement: Any peer (i.e. Bob, Carol, or David, etc.) that

received the transactions from Ann can publish the signed𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡
transactions to the blockchain anything before the timelock expires to withdraw

the tokens. We call the transactions that are published as𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡
"on-chain settlement" transactions.

Note that the recipient peers need to pay for the gas fee for the on-chain

settlement transaction. To pay less transaction fees, they would have the incentive

to publish on-chain settlements only when necessary, which is beneficial to the

scalability of the network.

We note that no on-chain transaction is needed when Ann switches from one peer to

another to retrieve the resource. In the audio streaming context, this means the viewer

can switch to any caching node at any time without making an on-chain transaction that

could potentially block or delay the audio stream delivery. As shown in the figure, in the

event that Bob leaves, Ann can switch to Carol after receiving chunks from Bob, and𝑘
keep receiving audio stream segments without an on-chain transaction.

Moreover, the total amount of tokens needed to create the micropayment pool is

, which can be as low as twice the value of the requested resource,(𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 +  𝑑𝑒𝑝𝑜𝑠𝑖𝑡)
no matter how many peers Ann retrieves the resource from. Using computational

complexity language, the amount of reserved token reduces from to compared𝑂(𝑛) 𝑂(1)
to the unidirectional payment channel approach, where is the number of peers Ann𝑛
retrieves the resource from.

Double Spending Detection and Penalty Analysis

To prevent Ann, the creator of the micropayment pool from double spending, we need to

1) be able to detect double spending, and 2) ensure that the net value Ann gains from

double spending is strictly negative.

Detecting double spending is relatively straightforward. The validators of the Allaudio

Network check every on-chain transaction. If a remaining deposit in the micropayment

pool cannot cover the next consolidated payment transaction signed by both Ann and

another peer, the validators will consider that Ann has conducted a double spend.

Next, we need to make Ann worse off if she double spends. This is where the collateral

comes in. Earlier, we mentioned that the amount of collateral tokens has to be larger than

the deposit. And here is why.

In Figure u below, Bob, Carol, and David are honest. Ann is malicious. Even worse, she

colludes with another malicious peer, Edward. Ann exchanges partially signed transactions



withBob, Carol, and David for the specified resource. Since Ann gains no extra value for

the duplicated resource, the maximum value she gets from Bob, Carol, and David is at

most the amount. As Ann colludes with Edward, she can send Edward the full𝑑𝑒𝑝𝑜𝑠𝑖𝑡
amount. She then asks Edward to commit the settlement transaction before𝑑𝑒𝑝𝑜𝑠𝑖𝑡

anyone else and return her the later. In other words, Ann gets the resource which𝑑𝑒𝑝𝑜𝑠𝑖𝑡
is worth at most the amount for free, before the double spending is detected.𝑑𝑒𝑝𝑜𝑠𝑖𝑡
Later when Bob, Carol, or David commit the settlement transaction, the double spending

is detected, and the full amount will be slashed. Hence, the net return for Ann𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙
is

𝑛𝑒𝑡
𝐴𝑛𝑛

 =  𝑑𝑒𝑝𝑜𝑠𝑖𝑡 −  𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙

Therefore, we can conclude that for this scenario, as long as , then𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 >  𝑑𝑒𝑝𝑜𝑠𝑖𝑡
Ann's net return is negative. Hence, if Ann is rational, she would not have any incentive to

double spend.

We can conduct similar analysis for other cases. The details are omitted here, but it can

be shown that in all cases Ann's return is always negative if she conducts a double spend.

Another case is that Ann is honest, but some of her peers are malicious. After Ann sends a

micropayment to one of those peers, it might not return Ann the resource she wants. In

this case, Ann can turn to another peer to get the resource. Since each incremental

micropayment can be infinitesimally small in theory, Ann's loss can be made arbitrarily

small.

{Figure u. Malicious Actor Detection and Penalty shows malicious actor Ann attempting to

make a double spend and the resulting penalty she receives}

Ledger Storage System

Using a public ledger to facilitate the micropayments for streaming is challenging, not only

because of high transaction throughput, but also for storage space management. To

achieve the "pay-per-byte" granularity, each listener could spend out a payment every few

seconds. With even a moderate ten thousand concurrent users, it could generate a couple

thousands of transactions per second. Even with the off-chain payment pool which already

reduces the amount of on-chain transactions dramatically, the block and state data could

still balloon rather quickly.

Our storage system is built to address this problem, and can adapt to different types of

machines, be it a powerful server cluster running in data centers, or a commodity desktop

PC.



Storage Microservice Architecture

To harness the processing and storage power of server clusters, the key design decision is

to adopt the popular microservice architecture commonly seen for modern web service

backends, where different modules of the ledger can be configured to run on different

machines. In particular, the consensus module and the storage module can be separated.

Potentially the consensus module can run on multiple machines using MapReduce

framework to process transactions in parallel.

The Allaudio ledger stores both the transaction blocks and the account state history,

similar to Ethereum. The bottom layer of the storage module is a key value store. The

Allaudio ledger implements the interface for multiple databases, ranging from single

machine LevelDB to cloud based NoSQL database such as MongoDB, which can store

virtually unlimited amounts of data. Thus the ledger can run on one single computer, and

can also be run on server clusters.

History Pruning

While the microservice architecture suits the powerful server clusters well, we still face

storage space constraints when running the ledger on a lower-end home PC. We have

designed several techniques to reduce the storage consumption.

Similar to Ethereum, the Allaudio ledger stores the entire state for each block, and the

state tree root is saved in the header of the corresponding block. To reduce the space

consumed by the state history, the Allaudio ledger implements state history pruning, which

leverages a technique called reference counting illustrated in the figure below.

{Figure m. State history pruning with reference counting}

The ledger state (i.e. the token balance of each account, etc.) is stored using

Merkle-Patricia trie. Figure m(a) depicts the initial state tree, whose root is denoted by

the State 0. Each node in the tree has an attribute called the "reference count", which is

equal to the number of parents of the node. In the initial state tree, each node has only

one parent, so the reference counts are all set to 1.

In Figure m(b), account A is updated to A* after applying the transactions in the newly

settled block. Hence a new Merkle state root State 1 is created, along with the Merkle

branch connecting the new root State 1 and A* (the blue nodes and edges). Since new

nodes are added, we update the reference count of direct children of these new nodes

from 1 to 2.

At some point we decided to delete State 0 to save some storage space. This is done by

deleting the nodes whose reference count is zero recursively starting from the root State

0, until no node can be deleted. Whenever a node is deleted, the reference count of all its



children will be decremented by one. Figure m(c) illustrates the process, and Figure m(d)

shows the result of the pruning. To achieve the maximum level to state storage

compaction, once a block is finalized by the guardian pool, we can delete all the history

prior to that block. The ledger can also be configured to keep a limited history of states,

for example, the state trees of the latest 1000 blocks, depending on the available space.

It can be shown that with the reference counting technique, pruning a state tree has the

time complexity of , where is the number of accounts updated by the𝑂(𝑘 𝑙𝑜𝑔 𝑁) 𝑘
transactions in one block, and is the total number of accounts. Typically, is in the𝑁 𝑘
range of a couple of hundreds to a thousand. Hence, pruning a state tree should be pretty

efficient and should not take much time.

Managing the space consumed by the transaction blocks is even simpler, after a block is

finalized, we can simply delete all its previous blocks, or keep a limited history similar to

the state trees.

With these techniques, common PCs and laptops are sufficient to run the guardian nodes.

State Synchronization

One of the pain points using earlier generation blockchains is the state synchronization time.
After spinning up a new node, typically it needs to download the full block history all the way
from genesis block. This could take days to complete, and already becomes a hurdle for
user adoption.

The state and block history stored by the full nodes can help reduce the synchronization time
dramatically. After a new node start, the first step is to download all the validator and
guardian join/leave transactions and the headers of the blocks that contain these special
transactions up to the latest finalized block. With these special transactions and the headers
which contain the validator and guardian signatures, the new node can derive the current
validator committee and guardian pool. Since the validator and guardian set changes are
relatively infrequent, the amount of data needed to be downloaded and verified for this step
should be minimal.

In the second step, the new node downloads the state tree corresponding to the latest and
finalized block. And it needs to confirm that the root hash of the tree equals the state hash
stored in the latest finalized block. Finally, the new node verifies the integrity of the state tree
(e.g. the validity of the Merkle branches). If all the checks are passed, the new node can
start listening to new blocks and start participating in the consensus process.



A Dual Currency System and Token Mechanics

In the interest of securing the network, installing proper governance, and managing the

usage of the network, the Allaudio blockchain will use a dual currency system. The

Allaudio token will be used to stake, secure, and govern the Allaudio Network, while

individual operations (live audio segment transactions, smart contract operations, etc.)

will be paid for with the operational token, Tansen.

There are two reasons to introduce a second token:

First, this allows the utility and purpose of each token to be separated. Allaudio is used

strictly for staking and securing the network, while Tansen is used to power utility-based

operations of the network. This is necessary because staking inherently decreases

circulation supply, but audio segment transactions and smart contracts will require a

highly liquid token that can facilitate millions of daily transactions.

Second, two tokens are needed to solve possible consensus issues that arise from using the

same token for staking and operations. Because the token used for operations must be

liquid, it would be easier for a malicious actor to accumulate a significant number of that

frequently-traded token on the open market. If that same token is also used for staking,

they could potentially threaten the security of the Allaudio Network. By separating the

two functions (staking and operations) into different tokens, that risk is greatly decreased.

Allaudio Token Supply and Mechanics

As an ERC20 token, the Allaudio token, currently can be fixed at 1 billion. The supply of

Allaudio tokens will be permanently fixed at 1 billion, meaning no new Allaudio tokens will

ever be created.

The primary reason for fixing the Allaudio token supply is to make it prohibitively

expensive for a malicious actor to acquire enough tokens to threaten the network. Since

new Allaudio tokens will never be created, the only way to acquire more is by purchasing

existing tokens and overtime making it more expensive to amass the controlling amount of

Allaudio tokens.

Tansen Token Supply and Mechanics

Tansen is the operational token of the Allaudio blockchain, used to pay for the audio

segment microtransactions and smart contract operations. The Tansen token is also built

on the Allaudio blockchain and 5 billion Tansen will be generated at the launch of Allaudio

Network.

Validator and Guardian Nodes



The validator set will initially be made up of nodes operated by Allaudio Network Inc, to

be followed by additional validator nodes operated by key strategic partners.

website: https://allaudio.network/

https://platonetwork.org/

